Matematik 26 nci

IMG_20250115_213113

Verilen İfade: logaritma Problemi

Çözüm:

Verilen ifadeye göz atalım:

\log_3(x+12) \cdot \log_3 3 = 2

logaritmanın temel özelliklerine göre, \log_3 3 = 1 olduğundan dolayı bu ifadeyi:

\log_3(x+12) \cdot 1 = 2

olarak sadeleştirebiliriz. Bu durumda denklemi:

\log_3(x+12) = 2

halinde yazabiliriz. Logaritma fonksiyonunun tanımını kullanarak bu denklemi üstel bir forma dönüştürelim. Eğer \log_3(y) = z ise, bu 3^z = y anlama gelir. Bu durumda:

3^2 = x+12

olur. 3^2 = 9 olduğundan dolayı:

9 = x + 12

x’i yalnız bırakmak için her iki taraftan 12 çıkaralım:

x = 9 - 12

Bunu şu şekilde yazabiliriz:

x = -3

Sonuç:

Yukarıdaki çözümleme ile, x’in değerini bulduk: x = -3.

Şıklar Seçenek
a -3
b 2
c 3
d 4

Doğru cevap a şıkkıdır.