Sorunun doğru cecvabı
Log2(3x+1) = 4 olduğuna göre x kaçtır?
Cevap:
Bu logaritma denkleminin çözümü için adım adım ilerleyelim. Verilen denklem:
\log_2(3x + 1) = 4
-
Logaritmayı Üst Açılımı Olarak Yazma:
Logaritma denklemini anlamak için, logaritmanın tanımını kullanarak üstel forma dönüştürelim. \log_b(a) = c ifadesi b^c = a şeklinde yazılabilir. Bu durumda:
2^4 = 3x + 1
-
Üst İşlemi:
2^4 işleminin sonucu 16’dır. Bu denklemi güncelleyelim:
16 = 3x + 1
-
3x’i Yalnız Bırakma:
Her iki taraftan 1’i çıkaralım:
16 - 1 = 3x
15 = 3x
-
x’i Bulma:
x’i yalnız bırakmak için her iki tarafı da 3’e bölelim:
x = \frac{15}{3}
x = 5
Sonuç:
Bu denkleme göre, x değeri 5’tir.
Özet: Logaritma denklemini üstel forma çevirdik, üst işlemi yaptık ve adımları takip ederek x = 5 değerini bulduk. Bu süreçte logaritma ve üstel işlemler arasındaki ilişkiyi anlamış olduk.