Soru: 22 ve 23. Soruları aşağıdaki bilgilere göre birbirinden bağımsız cevaplayınız.
Bir bulaşık makinesinde bulunan A, B ve C programlarının her biri yıkama ve durulama olmak üzere iki bölümden oluşmaktadır. Bu programların yıkama sürelerinin dakika türünden gösterimi 1. grafikte, durulama sürelerinin dakika türünden gösterimi ise 2. grafikte gösterilmiştir.
Grafikleri inceleyerek bu soruları çözelim:
Grafik 1: Yıkama Süreleri
- A Programı: 90 derece
- B Programı: 90 derece
- C Programı: 180 derece
Grafik 2: Durulama Süreleri
- A Programı: 120 derece
- B Programı: 150 derece
- C Programı: 90 derece
Dereceleri dakikaya çevirmek için, her bir grafiğin toplamının 360 derece olduğunu ve bu toplamın belirli bir dakika süresine denk geldiğini göz önünde bulundurmalıyız. Verilen soruyla ilgili spesifik bazı sorular [22 ve 23. sorular] belirtilmemiştir. Ancak genelde bu tür sorular aşağıdaki şekilde olabilir:
-
Yıkama ve Durulama Sürelerinin Toplamı
- Belirli bir programın yıkama ve durulama sürelerini hesaplamak.
-
Hangi Program Daha Uzun Sürede Tamamlanır
- Yıkama ve durulama sürelerinin toplam sürelerini karşılaştırarak en uzun süren programı belirlemek.
Varsayımsal bir örnek olarak 1. soruyu şu şekilde çözebiliriz:
Yıkama ve Durulama Sürelerinin Dakikaya Çevrilmesi:
1. Grafik için Yıkama Sürelerinin Hesaplanması:
Grafik 1’in toplamı 360 derece. Bu 360 dereceyi dakikaya çevirmek için her bir programın derece cinsinden yıkama süresini kullanabiliriz.
Varsayalım ki toplam yıkama süresi X dakikadır.
Bu durumda,
- A programı:\frac{90}{360} \times X = \frac{1}{4} \times X
- B programı:\frac{90}{360} \times X = \frac{1}{4} \times X
- C programı:\frac{180}{360} \times X = \frac{1}{2} \times X
2. Grafik için Durulama Sürelerinin Hesaplanması:
Grafik 2’in toplamı 360 derece. Bu 360 dereceyi dakikaya çevirmek için her bir programın derece cinsinden durulama süresini kullanabiliriz.
Varsayalım ki toplam durulama süresi Y dakikadır.
Bu durumda,
- A programı:\frac{120}{360} \times Y = \frac{1}{3} \times Y
- B programı:\frac{150}{360} \times Y = \frac{5}{12} \times Y
- C programı:\frac{90}{360} \times Y = \frac{1}{4} \times Y
Programların Toplam Sürelerinin Hesaplanması:
Toplam süre (yıkama + durulama) hesaplamaları yapılmalıdır. Ancak dikkat edilmesi gereken, her grafikte toplam sürelerin dakika türünden veri olduğunu belirtmemiz gerektiğidir. Buradaki hesaplamalarla sadece yüzdesel dağılımlar elde edilmiştir. Gerçek süre bilgisi sağlanmalıdır.
Sonuç olarak, bu soruların spesifik cevaplarını grafikte verilen açı derecelerini dakika cinsine çevirerek ve her bir programın süre toplamını karşılaştırarak bulabilirsiniz. Grafikte belirtilen açılar ve hangi programın daha uzun sürdüğüne dair kesin bilgi verilmelidir.