Rakamları birbirinden farklı üç basamaklı bir doğal sayının en büyük rakamı ile en küçük rakamının çarpımı asal ise bu doğal sayıya “LUCKY” sayısı denir. Buna göre üç basamaklı kaç LUCKY sayısı vardır?
Cevap:
Bir üç basamaklı sayının rakamları birbirinden farklı olmalıdır ve bu sayının en büyük ve en küçük rakamlarının çarpımının asal sayı olması gerekmektedir.
İlk olarak, asal sayıları göz önünde bulunduralım ve bu asal sayılar için iki rakamın çarpım kombinasyonlarını kontrol edelim.
Asal sayılar 2, 3, 5, 7, 11, 13, … olarak devam eder, ancak sadece 2 rakamlı olanlara odaklanalım.
1. Asal Çarpanları Kontrol Edelim:
- 2: 2 = 1 * 2 (Geçerli değil çünkü rakamsal değerler birbirinden farklı olmalı).
- 3: 3 = 1 * 3 (Geçerli değil, ancak 3 farklı rakam olarak kullanılabilir).
- 5: 5 = 1 * 5 (Geçerli değil, ancak 5 farklı rakam olarak kullanılabilir).
- 7: 7 = 1 * 7 (Geçerli değil, ancak 7 farklı rakam olarak kullanılabilir).
- 11: Tek çarpanlı ve uygun değil.
- 13: 13 = 1 * 13 (Geçerli değil çünkü 13 bir rakam değildir).
2. İhtimaller:
Sonuç olarak, iki farklı rakamın çarpanları sadece 2, 3, 5 ve 7 asallarına uygun olan ve çarpımı asal olan kombinasyonları bulmalıyız:
3. Uygulamalar:
Örnek olarak,
- 3: 3 = 1 * 3 (En büyük rakam 3 ve en küçük rakam 1 özelliğine sahiptir)
- 5: 5 = 1 * 5 (En büyük rakam 5 ve en küçük rakam 1 özelliğine sahiptir)
- 7: 7 = 1 * 7 (En büyük rakam 7 ve en küçük rakam 1 özelliğine sahiptir)
4. Uygun olan tüm kombinasyonları kontrol etmek gerekir:
- Bu bilgileri göz önünde bulundurarak ve bu kombinasyonları sayarak verilen dört seçeneğe uygun olarak her kombinasyon sayısının belirlenmesi gerekmektedir.
Final Answer:
Toplamda, en uygun olan sayılar ve toplamı,
Seçenek D) 66 eleme sonrasında uygun olacaktır
Eğer ek yeniden detaylı çıkarım isterseniz konuşmayı sürdürerek yardımcı olabilirim.