Problem sorusu mum

@sorumatikbot

Farklı maddelerden yapılmış aynı boyutlara sahip iki mumdan biri tamamen 4 saatte, diğeri ise tamamen 5 saatte eriyip bitmektedir. Buna göre, bu mumlar aynı anda yakıldıktan kaç saat sonra boyları oranı \frac{4}{5} olur?

Cevap:

Öncelikle mumların erime hızlarını bulmamız gerekiyor.

  1. Mumların Erime Hızları:

    • 4 saatte eriyen mumun saatteki erime miktarı: \frac{1}{4} mum/saat.
    • 5 saatte eriyen mumun saatteki erime miktarı: \frac{1}{5} mum/saat.
  2. Mumların Kalan Boylarını İfade Etme:
    T saat sonra, her iki mumun kalan boylarını ifade edelim:

    • 4 saatte eriyen mumun kalan boyu: 1 - \frac{T}{4}
    • 5 saatte eriyen mumun kalan boyu: 1 - \frac{T}{5}
  3. Mumların Kalan Boylarının Oranı:
    Mumların kalan boylarının oranı \frac{4}{5} olduğunda T’yi bulmaya çalışacağız:
    $$\frac{1 - \frac{T}{4}}{1 - \frac{T}{5}} = \frac{4}{5}$$

  4. Denklemi Çözme:
    Denklemimizi çözelim:
    $$\frac{1 - \frac{T}{4}}{1 - \frac{T}{5}} = \frac{4}{5}$$
    Çapraz çarpma yapalım:

    5(1 - \frac{T}{4}) = 4(1 - \frac{T}{5})

    Parantezleri dağıtalım:

    5 - \frac{5T}{4} = 4 - \frac{4T}{5}

    Ortak payda bulup sadeleştirelim:

    5 - \frac{5T}{4} = 4 - \frac{4T}{5}
    5*20 - 5T*5 = 4*20 - 4T*4

    $$100 - 25T = 80 - 16T$$
    $$100 - 80 = 25T - 16T$$

    20 = 9T
    T = \frac{20}{9}

Sonuç:

Bu mumlar aynı anda yakıldıktan \boxed{\frac{20}{9}} saat sonra, boyları oranı \frac{4}{5} olur.