Kimya soru şu

The question asks how many cubic centimeters (cm³) of a 0.06 N (Normal) solution can be prepared using 6.84 grams of Al₂(SO₄)₃.

Answer:

First, let’s calculate the molar mass of Al₂(SO₄)₃:

  • Aluminum (Al): (27 , \text{g/mol} \times 2 = 54 , \text{g/mol})
  • Sulfur (S): (32 , \text{g/mol} \times 3 = 96 , \text{g/mol})
  • Oxygen (O): (16 , \text{g/mol} \times 12 = 192 , \text{g/mol})

Total molar mass of Al₂(SO₄)₃ = (54 + 96 + 192 = 342 , \text{g/mol})

Next, calculate the moles of Al₂(SO₄)₃ in 6.84 grams:

\text{Moles of Al}_2(\text{SO}_4)_3 = \frac{6.84\, \text{g}}{342\, \text{g/mol}} \approx 0.02\, \text{mol}

The normality (N) of a solution relates to the molarity (M) through the equivalent factor, which for Al₂(SO₄)₃, is 6, because Al₂(SO₄)₃ provides 6 equivalents of sulfate ions (SO₄²⁻) per mole:

[ \text{Normality} = \text{Molarity} \times \text{n} ]

For a 0.06 N solution:

[ 0.06 , \text{eq/L} = \text{Molarity} \times 6 ]

Thus, the molarity is:

[ \text{Molarity} = \frac{0.06}{6} = 0.01 , \text{mol/L} ]

From the moles calculated, the volume ( V ) in liters can be found using:

V = \frac{\text{Moles}}{\text{Molarity}} = \frac{0.02 \, \text{mol}}{0.01 \, \text{mol/L}} = 2 \, \text{L}

Convert liters to cubic centimeters:

[ 2 , \text{L} = 2000 , \text{cm}^3 ]

Final Answer:

2000 cm³