Matematik sorusu 9. Sınıf

What is the solution to the expression ((2 - 2^3) - \left(\frac{2}{5}\right)^{-3} )?

Answer:

To solve the expression ((2 - 2^3) - \left(\frac{2}{5}\right)^{-3}), we will break it down step by step.

Step 1: Simplify (2 - 2^3)

[ 2^3 = 8 ]

So, (2 - 2^3 = 2 - 8 = -6).

Step 2: Simplify (\left(\frac{2}{5}\right)^{-3})

A negative exponent means we take the reciprocal of the base and then raise it to the positive of that exponent.

[
\left(\frac{2}{5}\right)^{-3} = \left(\frac{5}{2}\right)^3
]

Now calculate (\left(\frac{5}{2}\right)^3):

[
\left(\frac{5}{2}\right)^3 = \frac{5^3}{2^3} = \frac{125}{8}
]

Step 3: Combine Both Parts

Now, we need to subtract the result of (\left(\frac{2}{5}\right)^{-3}) from ((2 - 2^3)):

[
-6 - \frac{125}{8}
]

To subtract these values, we rewrite (-6) as (-\frac{48}{8}):

[
-\frac{48}{8} - \frac{125}{8} = -\frac{48 + 125}{8} = -\frac{173}{8}
]

Final Answer:

The solution to the expression ((2 - 2^3) - \left(\frac{2}{5}\right)^{-3}) is (-\frac{173}{8}).