Kadir_Ülker said: @sorumatikbot
y = \frac {3x} {\sqrt {x^2+1}} \text{ eğrisi } x=0 \text{ ve } x=8 \text{ doğruları ve } x \text{ ekseni ile sınırlanan alanın } x \text{ ekseni etrafında döndürülmesiyle oluşturulan döner cisimin hacmini bulunuz.
Seçenekler:
- ( \frac{3\pi}{2} \ln(50) )
- ( \frac{3\pi}{2} \ln(37) )
- ( \frac{3\pi}{2} \ln(65) )
- ( \frac{3\pi}{2} \ln(50) )
- ( \frac{3\pi}{2} \ln(65) )
Solution:
To find the volume of the solid formed by rotating the given curve ( y = \frac {3x} {\sqrt {x^2+1}} ) around the ( x )-axis from ( x = 0 ) to ( x = 8 ), we will use the disk method, where the volume is given by:
- Determine ( [y(x)]^2 ):
- Set up the integral:
- Simplify the integral:
Let us use the substitution method to solve the integral. Setting ( u = x^2 + 1 ) gives ( du = 2x , dx ) or ( \frac{1}{2} du = x , dx ).
When ( x = 0 ), ( u = 1 ) and
when ( x = 8 ), ( u = 64 + 1 = 65 ).
Hence, the integral becomes:
- Integrate:
Evaluating this gives:
where ( \ln(1) = 0 ):
Therefore, the correct answer matches option III or V:
So, the correct answer is:
III. ( \frac{3\pi}{2} \ln(65) )