Yemek yemek için toplanan bir grup arkadaş, hesabı kimin ödeyeceğine karar vermek için bir oyun oynamaktadır. Şef garson, 1’den 10’a kadar bir sayı seçer ve bu sayı 60’a bölündüğünde kalan hesaplanır. Arkadaşlardan her birinin ismindeki harf sayıları ise birbirinden farklıdır ve çıkan kalana eşit harf sayısına sahip biri varsa o kişi, yoksa herkes ödemeye katkıda bulunur.
Arif ismi 4 harfli olduğuna göre, yalnızca Arif’in ödemesi için 60 sayısının bölümü sonucunda kalan ne olmalıdır?
Şef garsonun söyleyeceği sayılar ve bu sayıların 60 üzerindeki bölme işlemlerine göre kalanlar:
- 1 için: 60 % 1 = 0
- 2 için: 60 % 2 = 0
- 3 için: 60 % 3 = 0
- 4 için: 60 % 4 = 0
- 5 için: 60 % 5 = 0
- 6 için: 60 % 6 = 0
- 7 için: 60 % 7 = 4
- 8 için: 60 % 8 = 4
- 9 için: 60 % 9 = 6
- 10 için: 60 % 10 = 0
Arif’in adının harf sayısına denk gelen kalanlar yalnızca 7 ve 8 sonucu ortaya çıkıyor. Yani, bu oyun sonucunda Arif’in tek başına ödeme yapması için şef garsonun ya 7 ya da 8 sayılarını seçmesi gerekir.
Olasılık bu iki durumda olduğundan ve şef garsonun 1’den 10’a kadar rastgele bir sayı söylediğini varsayarak:
Olasılık = 2/10 = 1/5 olur.
Sonuç olarak, hesabı Arif’in tek başına ödeme olasılığı 1/5’tir.
Cevap: B) ( \frac{1}{5} )