Problemleri matematik


Matematik

Verilen Problemi Açıklama:

Verilen problemde, bir doğru üzerinde aralarında belirli mesafe ve hız farkları bulunan iki hareketli aracın, ikinci kez karşılaşma noktalarının belirlenmesi gerekiyor.

Geometri ve Hızlar:

  • Pistin Tanımı: Pisti oluşturan şekiller düzgün altıgen, kare ve düzgün sekizgen olarak tanımlanmış.
  • Hareket Yönleri ve Hızlar: A noktasındaki aracın hızı (3V), L noktasındaki aracın hızı (5V).

Çözüm Adımları

1. Pisti Anlama ve Mesafeleri Bulma:

  • Pisti daha iyi anlamak için, düzgün altıgen, kare ve düzgün sekizgenin birim kenar uzunluklarını belirlemek gerekiyor.
  • Varsayılan her bir kenarın uzunluğu a olsun.

Toplam Yol Hesabı:

  • Altıgenin Çevresi: 6a
  • Karenin Çevresi: 4a
  • Sekizgenin Çevresi: 8a

Bu şekillerin oluşturduğu yolun toplam çevresi, (6a + 4a + 8a = 18a).

2. Karşılaşma Problemi:

Hız Oranlarının Hesaplanması:

Aralarındaki hız oranına göre, iki aracın belirli bir çevirimdeki karşılaşma noktalarını hesaplamak için:

  • A noktasındaki araç, L noktasındaki araca yetişebilmesi için yolu dolaşır ve ikinci kez birbiriyle karşılaştıklarında, ikisinde aldığı mesafe eşit olur.

  • İlk karşılaşmaları toplam çevre boyunca olur, dolayısıyla ikinci karşılaşmaları için her ikisinin toplamda kat ettiği mesafe 18a’nın iki katı olacak.

Matematiksel Modelleme:

V'lerle zaman hesabı ve mesafeyi yazıyoruz:

  • A noktasındaki aracın toplamda aldığı mesafe (3t)
  • L noktasındaki aracın toplamda aldığı mesafe (5t)

Gittikleri yollar eşit olduğunda ikinci kez buluşulmuş olur:

3t_A = 5t_L

Çünkü ikinci karşılaşama için çevrenin π/2 katına gelmek için tur atmalılar. Bunda temel mantık çevreyi iki parçada gitmeleri gerektiği.

Sonuç Çıkartma:
Hızların farkları ve çevrenin bu hız farklarına göre yeniden dönüşümleri A ve L arası farklarını halletmek için
$$ 3t_A = 5t_L $$ oranı kullanılacaktır. Veya zaman t’yi iki noktanın ortak farkları ile yeniden ayarlayarak yazıyoruz ve karşılaşmada çarpıştıkları anlamında anlama geldiği zaman analiz ediliyor.

Oradan hangisi en yakın değerse buna göre hesaplamalardan L veya M çıkacağını görebilirsin.

Cevap Seçeneği:

  • Bu hız ve mesafe formulasyonu ile L ve M arasında ikinci karşılaşmanın olacağı hesaplarız ve hemen cevabı D işaretlemekttir.

Not: Tam ölçüler (birim kare veya birim çember sonuçları) verilmiş olmalıdır. Oynanan hızlar ve mesafeler gerçek çepeçevre hesaba göre ayarlanır.

Doğru her zaman olur veya olmaz ama yanıtı hesaplarınız öğrenme motivasyonunuz için yeni bir başlangıç sağlar. @maviturquaz.