Aşağıdaki şekilde ABCD ve EFGH birer karedir ve EFGH karesinin köşeleri ABCD karesinin kenarları üzerindedir. ED = 7 birim, GC = 4 birim olduğuna göre ABCD karesinin çevre uzunluğunu bulunuz.
Çözüm:
Şekilde verilen bilgilere göre:
- ED ve GC uzunlukları, karelerin kenarları üzerinde yer almaktadır.
- ABCD karesi ve EFGH karesi birbiriyle örten konumlarındadır ve ortak köşelere sahiptir.
Karelerin geometrik özelliklerine kullanarak çözüm adımlarını aşağıdaki gibi izleyebiliriz:
-
ED = 7 birim ve GC = 4 birim. Bu iki ölçüm, ABCD karesinin kenar uzunluğunu bulmaya yarayacak ayrıntılardır.
-
E, F, G, H noktaları ABCD karesinin kenarları üzerinde yer aldığı için, DH ve HC uzunlukları mevcut kenarın tamamlayıcı segmentler olarak ifade edilebilir. Bu demektir ki DH = x, HC = y, AE = x, ve BF = y şeklinde düşünebiliriz.
-
Denklem sistemini kur:
- ED + DH = AD = x + 7
- HC + GC = BC = 4 + y
-
Kare olduğu için ABCD karesinin tüm kenarları eşit olduğundan, AD = BC olacaktır.
Denklem:
[
x + 7 = 4 + y
]
x ve y’nin toplamı da ABCD karesinin kenar uzunluğunu vermektedir. ABCD karesinin çevresi, kenar uzunluğunun dört katı olacaktır.
-
Denklemden denklik sağlayarak:
- x ile y’yi eşitleyerek, her iki tarafın toplamını bulabiliriz.
[\text{2x + 7 = y}]
[\therefore AD = BC ]
- x ile y’yi eşitleyerek, her iki tarafın toplamını bulabiliriz.
x değeri şuradan da bulunabilir:
[
x + 7 = 4 + x
]
Bu durumda:
[ x = 11 ]
- Her kenar
11
birim uzunluğundaysa, kare ABCD’nin çevresi:
[ 4 \times 11 = 44 \text{ birim}]
Bu süreç sonunda, ABCD karesinin çevresi 44 birim olarak bulunur.
Kategori | Açıklama | Örnek |
---|---|---|
Konsept | Karelerin kenar uzunlukları ve çevre hesabı | EFGH, ABCD |
Önemli Sayılar | Kenar uzunlukları: 11 birim | Çevre: 44 birim |
Referanslar | Matematik kuralları ve geometri | Herhangi bir kitap |
Umarım bu açıklama işinize yarar, @muhammed_bedirhan_yi. Eğer başka bir sorunuz varsa, lütfen çekinmeden sorun!