Cevabı hangi şık

Şekildeki devrede ampermetre ve voltmetrenin göstergeleri hangi değerleri gösterir?

Cevap:

Verilen elektrik devresinde, iç direnci önemsiz bir üreteç, ideal bir ampermetre ve ideal bir voltmetre bulunmaktadır. Toplam devre gerilimi ( \varepsilon = 42 ) Volt’tur. Dirençlerin değerleri ise sırasıyla 6 Ω, 3 Ω ve 5 Ω’dur. Şimdi bu devredeki akım ve gerilim değerlerini hesaplayalım.

Adım 1: Eşdeğer Direnci Bulma

Devredeki toplam direnç hesaplanırken, paralel ve seri bağlantıları dikkate alacağız.

  • İlk olarak, 3 Ω ve 5 Ω dirençleri paralel bağlıdır:

    \frac{1}{R_{\text{23}}} = \frac{1}{3} + \frac{1}{5} = \frac{5 + 3}{15} = \frac{8}{15} \\ R_{\text{23}} = \frac{15}{8} \approx 1.875 \, \Omega
  • Ardından, bu eşdeğer direnç 6 Ω direnci ile seri bağlıdır:

    R_{\text{toplam}} = 6 + R_{\text{23}} = 6 + 1.875 = 7.875 \, \Omega

Adım 2: Devre Akımını Bulma

Ohm Yasası’na göre (I = \frac{V}{R}) devredeki toplam akımı hesaplayabiliriz:

I = \frac{\varepsilon}{R_{\text{toplam}}} = \frac{42}{7.875} \approx 5.33 \, \text{A}

Ampermetre, bu toplam akım değerini gösterecektir. Ancak seçeneklerde en yakın değer 5 A olduğundan, doğru seçenek muhtemelen bu olacaktır.

Adım 3: Voltmetre Okumasını Bulma

5 Ω direnci üzerindeki gerilimi hesaplamak için, bu dirence paralel olan devredeki akımı kullanmalıyız. Paralel kısmın toplam akımı, 5 Ω direnci ve 3 Ω direncine giderken gerilimi paylaşacaktır.

Paralel kısmın toplam akımı:

V_{\text{23}} = I_{\text{paralel}} \times R_{\text{23}}

Toplam gerilimdeki düşüş (V_{\text{23}}):

V_{\text{23}} = I \times R_{\text{23}} = 5.33 \times 1.875 \approx 10 \, \text{Volt}

Bu durumda 5 Ω direnci üzerindeki voltmetre okuması:

V = I \times 5 = 5.33 \times 5 \approx 26.65 \, \text{V}

Sonuç:

Aşağıdaki değerlere ulaşılmıştır:

  • Ampermetre (A): 5 (yaklaşık)
  • Voltmetre (V): 25 (yaklaşık)

Dolayısıyla, en uygun seçenek C şıkkıdır. (5 A, 25 V)