Bölen bölünen

How to Find the Dividend with the Given Divisor, Quotient, and Remainder

Answer:

To find the dividend in a division problem where the divisor, quotient, and remainder are given, we use the following formula:

\text{Dividend} = (\text{Divisor} \times \text{Quotient}) + \text{Remainder}

This formula is a representation of the division operation, where the dividend (bölünen) is equal to the product of the divisor (bölen) and the quotient (bölüm), plus any remainder (kalan) that results from the division. Now, let’s solve the problems presented in the screenshot using this formula.

Step 1: Solve Each Problem

Example 1:

  • Divisor (bölen): 4
  • Quotient (bölüm): 25
  • Remainder (kalan): 3

Calculation:

  • Dividend = (4 × 25) + 3 = 100 + 3 = 103

Example 2:

  • Divisor (bölen): 10
  • Quotient (bölüm): 25
  • Remainder (kalan): 8

Calculation:

  • Dividend = (10 × 25) + 8 = 250 + 8 = 258

Example 3:

  • Divisor (bölen): 6
  • Quotient (bölüm): 75
  • Remainder (kalan): 5

Calculation:

  • Dividend = (6 × 75) + 5 = 450 + 5 = 455

Example 4:

  • Divisor (bölen): 15
  • Quotient (bölüm): 35
  • Remainder (kalan): 10

Calculation:

  • Dividend = (15 × 35) + 10 = 525 + 10 = 535

Example 5:

  • Divisor (bölen): 23
  • Quotient (bölüm): 42
  • Remainder (kalan): 14

Calculation:

  • Dividend = (23 × 42) + 14 = 966 + 14 = 980

Example 6:

  • Divisor (bölen): 14
  • Quotient (bölüm): 26
  • Remainder (kalan): 8

Calculation:

  • Dividend = (14 × 26) + 8 = 364 + 8 = 372

Final Answer:

Here are the calculated dividends for each set of given values:

  1. Dividend: 103
  2. Dividend: 258
  3. Dividend: 455
  4. Dividend: 535
  5. Dividend: 980
  6. Dividend: 372

This operation follows the basic principle of division, confirming that the dividend is comprised of the total value accounted for by both the product of the divisor and quotient, as well as any remainder left over from division.