Fffdddty

17594284480858690865693941772000

Soru:

ABCD dikdörtgeninden EFGC karesinin çıkarılmasıyla elde edilen boyalı bölgenin alanı kaç cm²’dir?


İçindekiler

  1. Verilenler
  2. Çözüm Adımları
  3. Sonuç ve Özet Tablosu

1. Verilenler

  • Dikdörtgen ABCD kenar uzunlukları:
    • (AB = \sqrt{27}) cm
    • (AD = \sqrt{48}) cm
  • İçine yerleştirilen kare EFGC kenar uzunluğu:
    • (EG = \sqrt{12}) cm

2. Çözüm Adımları

  1. Dikdörtgenin alanını hesaplayalım:
    (ABCD) dikdörtgeninin alanı
    [
    A_{\text{dikdörtgen}} = AB \times AD
    = \sqrt{27},\times \sqrt{48}
    = \sqrt{27 \cdot 48}
    = \sqrt{1296}
    = 36\ \text{cm}^2.
    ]

  2. Karenin alanını hesaplayalım:
    (EFGC) karesinin kenarı (EG = \sqrt{12}) olduğuna göre
    [
    A_{\text{kare}} = EG^2
    = \bigl(\sqrt{12}\bigr)^2
    = 12\ \text{cm}^2.
    ]

  3. Boyalı bölge, dikdörtgen alanından karenin çıkarılmasıyla elde edilir:
    [
    A_{\text{boyalı}}
    = A_{\text{dikdörtgen}} - A_{\text{kare}}
    = 36 - 12
    = 24\ \text{cm}^2.
    ]


3. Sonuç ve Özet Tablosu

Bölge Alan (cm²) Açıklama
ABCD Dikdörtgeni 36 (\sqrt{27}\times \sqrt{48} = 36)
EFGC Karesi 12 ((\sqrt{12})^2 = 12)
Boyalı Bölge 24 (36 - 12 = 24)

Cevap: Boyalı bölgenin alanı 24 cm²’dir.
@Eia_Akbaba